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10.3

Fig. 10.6 Convergent
nozzle with
back-pressure variation

Fig. 10.7 Propagation
of a small disturbance
in a flowing fluid

10.3 Maximum mass flow

Maximum mass flow

Consider a convergent nozzle expanding into a space, the pressure of which
can be varied, while the inlet pressure remains fixed. The nozzle is shown
diagrammatically in Fig. 10.6. When the back pressure, py, is equal to p,, then
no fluid can flow through the nozzle. As p,, is reduced the mass flow through
{he nozzle increases, since the enthalpy drops, and hence the velocity, increases.
However, when the back pressure reaches the critical value, it is found that no
further reduction in back pressure can affect the mass flow. When the back
pressure is exactly equal to the critical pressure, p,, then the velocity at exit is
sonic and the mass flow through the nozzle is at a maximum. If the back
pressure is reduced below the critical value then the mass flow remains at the
maximum value, the exit pressure remains at p,, and the fluid expands violently
outside the nozzle down to the back pressure. It can be seen that the maximum
mass flow through a convergent nozzle is obtained when the pressure ratio
across the nozzle is the critical pressure ratio. Also, for a convergent-divergent
nozzle, with sonic velocity at the throat, the cross-sectional area of the throat
fixes the mass flow through the nozzle for fixed inlet conditions.
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When a nozzle operates with the maximum mass flow it is said to be choked.
A correctly designed convergent-divergent nozzle is always choked.

An attempt can be made to explain the phenomenon of choking, by
considering the velocity of any small disturbance in the stream. Any small
disturbance in the flow is propagated as small pressure waves travelling at the
velocity of sound in the fluid in all directions from the centre of the disturbance.
This is illustrated in Fig. 10.7; the pressure waves emanate from point Q at the
velocity of sound relative to the fluid, a, while the fluid moves with a velocity,
C. The absolute velocity of the pressure waves travelling back upstream is
therefore given by (a — C). Now when the fluid velocity is subsonic, then C < g,

Absolute Absolute
veloaity velocity
(a—C) (a+C)
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Example 10.2

Solution

and the pressure waves can move back upstream; however, when the flow is
sonic, or supersonic (i.e. C = a or C > a), then the pressure waves cannot be
transmitted back upstream. It follows from this reasoning that in a nozzle in
which sonic velocity has been attained no alteration in the back pressure can
be transmitted back upstream. For example, when air at 10 bar expands in a
nozzle, the critical pressure can be shown to be 5.283 bar. When the back pressure
of the nozzle is 4 bar, say, then the nozzle is choked and is passing the maximum
mass flow. If the back pressure is reduced to 1 bar, say, the mass flow through
the nozzle remains unchanged. Even if the air were allowed to expand into an
evacuated space, the mass flow would be no greater than that through the
nozzle when the back pressure is 5.283 bar.

A fluid at 6.9 bar and 93 °C enters a convergent nozzle with negligible velocity,
and expands isentropically into a space at 3.6 bar. Calculate the mass flow
per square metre of exit area:

(1) when the fluid is helium (¢, = 5.19 kJ /kg K);
(i1) when the fluid is ethane (¢, = 1.88 kJ/kg K).

Assume that both helium and ethane are perfect gases, and take the respective
molar masses as 4 kg/kmol and 30 kg/kmol.

(1) Tt is necessary first to calculate the critical pressure in order to discover
whether the nozzle is choked.
From equation (2.9), R = R/, therefore for helium,

8314.5
R=3T=2079Nm/kg](

Then from equation (2.22)

__R

=1

y—1 R 2079
1e. —_——=— =

y ¢, 10°x5.19
therefore

= : —it I o7

Yt o0a

Then using equation (10.7)

Pe 2 iy =1} ( 2 )1.667;0.567
e — =|— = 0.487
P, (}’ =+ 1) 2.667

ie. p. = 0487 x 6.9 bar
iec. Critical pressure p. = 3.36 bar

The actual back pressure is 3.6 bar, hence in this case the fluid does not reach
the critical conditions and the nozzle is not choked.




Nozs

= QND&_& @nPANS'ION-' Nhon, * b Aode 1
)
Ly wropede s ABal

ﬁo UM%Q,K_,PW\.J SW U" e P& bg,,,.n g;m . j\b ﬂoﬂ.ﬂt
Ox P@.ﬂd& t. e apwgw preexs- S Tt

W’) Ao Mﬂ? ) g},ﬁ&Wﬂ? da =D
CL)\_Ql W m”zﬁa'

L pwzrle. on  Ouer
) B ,éxpmg,c.'m W

mnoprle S b akesys
/B.;hd, A WW{ e -



o = Ower QWW e |
‘ O s
b = Cactieal W‘m

&)

(LONVERLENT - DIVERGENT _NO2HE -




W 3 I szu 7 M ‘b) M :"L’L"’KVI

omd T vk WW%
Wemhi - on sesparness Wit







 ohew
Supex Alocl
A0
(5
W}/:fp% L% 28 Hecolerdled
o s g |
w o % mf?ﬂ:mm mp%im 00
- W (L) . IOt
puanpesst b :
ﬁ Ahecle
g}u-
e

MET
A
sTomLe  S7
ATE !-

——

8[,!_,
W
—QW




LG,

When a superheated vapour expands isentropically, condensation within the
vapour begins to form when the saturated vapour line is reached. As the
expansion continues below this line into the wet region, then condensation
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Fig. 10.15 Superheated
steam expanding into
the wet region on

(a) T-s and (b) h—s
diagrams

Fig. 10.16
Supersaturated
expansion of steam on
(a) T-s and (b) h-s
diagrams
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proceeds gradually and the dryness fraction of the steam becomes progressively
smaller. This is illustrated on T—s and h—s diagrams in Figs 10.15(a) and (b).
Point A represents the point at which condensation within the vapour just begins.

It is found that the expansion through a nozzle takes place'so quickly that
condensation within the vapour does not occur. The vapour expands as a
superheated vapour until some point at which condensation occurs suddenly =
and irreversibly” The point at which condensation occurs may be within the
nozzle or after the vapour leaves the nozzle.

Up to the point at which condensation occurs the state of the steam is noty
one of stable equilibritm, yet it is not one of unstable equilibrium, since a small
disturbance will not cause condensation to commence. The steam in this
condition is said to be in a metastable state; the introduction of a large object
(e.g. a measuring instrument) will cause condensation to occur immediately.

Such an expansion is called a supersaturated expansion.

Assuming isentropic flow, as before, a supersaturated expansion in a nozzle
is represented on a T-s and an h-s diagram in Figs 10.16(a) and (b) respectively. i
Line 1-2 on both diagrams represents the expansion with equilibrium |
throughout the expansion. Line 1-R represents supersaturated expansion, In
supersaturated expansion the vapour expands as if the vapour line did not exist,
so that line 1-R intersects the pressure line p, produced from the superheat
region (shown chain-dotted). It can be seen from Fig 10.16(a) that the
temperature of the supersaturated vapour at p, is tg, which is less than the
saturation temperature t,, corresponding to p,. The vapour is said to be

T

P

Pa

ra B\

P2

N

P2

(a)



Fig. 10.17 Equilibrium
and supersaturated
expansion processes on
a p—v diagram

Example 10.5

10.8 The steam nozzle

supercooled and the degree of supercooling is given by (t, — ty). Sometimes a
degree of supersaturation is defined as the ratio of the actual pressure p, to the
saturation pressure corresponding to the temperature tg.

It can be seen from Fig. 10.16(b) that the enthalpy drop in supersaturated
flow (h, — hg) is less than the enthalpy drop under equilibrium conditions.
Since the velocity at exit, C,, is given by equation (10.4), C, = \/2(h, — h;),
it follows that the exit velocity for supersaturated flow is less than that for
equilibrium flow. Nevertheless, the difference in the enthalpy drop is small, and
since the square root of the enthalpy drop is used in equation (10.4), then the
effect on the exit velocity is small.

If the approximations for isentroic flow are applied to the equilibrium
expansion, then for the process illustrated in Figs 10.16(a) and (b), the expansion
from 1 to A obeys the law pv'® = constant, and the expansion from A to 2
obeys the law pv'''3® = constant. The equilibrium expansion and the
supersaturated expansion are shown on a p—v diagram in Fig. 10.17, using the
same symbols as in Fig. 10.16. It can be seen from Fig. 10.17 that the specific
volume at exit with supersaturated flow, vy, is considerably less than the
specific volume at exit with equilibrium flow, v,. Now the mass flow through
a given exit area, 4,, is given by equation (1.11), i.e. for equilibrium flow

A, C
rf‘] — ?‘__.2_
v,
pA
AN
Py —¥ Py

p;}[ Rl 2 \pz

Ug U3

=y

and for supersaturated flow
A,C
?ﬁs: 2R,
Ug

It has been pointed out that C, and Cy are very nearly equal; therefore, since
Ug < Uy, it follows that the mass flow with supersaturated flow is greater than
the mass flow with equilibrium flow. It was this fact, proved experimentally,
that led to the discovery of the phenomenon of supersaturation.

A convergent—divergent nozzle receives steam at 7 bar and 200°C and
expands it isentropically into a space at 3 bar. Neglecting the inlet velocity,
calculate the exit area required for a mass flow of 0.1 kg/s:

(1) when the flow is in equilibrium throughout;

(ii) when the flow is supersaturated with pv'? = constant.
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Students are advised to go through the lecture notes along with the
following books

1. Engineering Thermodynamics by P K NAG

2. Applied Thermodynamics for Engineering Technologists by EASTOP
& McCONKEY

In case of any typographic mistake, error or any difficulty, students
are advised to call me on 9906763424,7006161837, hanief@nitsri.net

students can call me for arranging video lectures
Students must complete this module within 5 days i.e before
(20th May).

Three unsolved numerical have been solved from EASTOP (Prob. 15
&6). Students are advised to attempt other problems from EASTOP
and PK Nag.



